Processing math: 100%

Monday, December 15, 2014

2014/110) Find closed form of

 \cos\,1^\circ \cos\,2^\circ + \cos\,2^\circ \cos\,3^\circ\cdots \cos\,88^\circ \cos\,89^\circ

we have 2 \cos(x) \cos (y) = \cos (x+y) + \cos (y-x)

so 2 (\cos\,1^\circ \cos\,2^\circ ) = \cos\,3^\circ + \cos\,1^\circ
 2 (\cos\,2^\circ \cos\,3^\circ ) = \cos\,5^\circ + \cos\,1^\circ
so on till
2 (\cos\,44^\circ \cos\,45^\circ ) = \cos\,89^\circ + \cos\,1^\circ

 2 (\cos\,45^\circ\cos\,46^\circ ) = \cos\,91^\circ + \cos\,1^\circ

or  2 (\cos\,45^\circ \cos\,46^\circ ) = - \cos\,89^\circ + \cos\,1^\circ


so on till

2 (\cos\,88^\circ \cos\,89^\circ ) = - \cos\,3^\circ + \cos\,1^\circ

on adding above for each positive term in 1st half for the first term there is a -ve term for the second half and we are left wth 88 times \cos\,1^\circ

so 2( \cos\,1^\circ \cos\,2^\circ + (\cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ)  = 88 \cos\,1^\circ

or  ( \cos\,1^\circ \cos\,2^\circ + (\cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ)  = 44 \cos\,1^\circ

No comments: