(1-a^2)+(1-a^2)^2+(1-a^2)^3+(1-a^2)^4+(1-a^2)^5+(1-a^2)^6
+(1-a^2)^7+(1-a^2)^8+(1-a^2)^9+(1-a^2)^{10}+(1-a^2)^{11}+(1-a^2)^{12}
if we put x= (1-a^2)
we get given expression as
x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}= x\dfrac{1-x^{12}}{1-x}
= (1-a^2)\dfrac{1-(1-a^2)^{12}}{a^2}
= \dfrac{(1-a^2)-(1-a^2)^{13}}{a^2}
now \dfrac{1-a^2}{a^2} shall not contribute to a^4 so we need to find the coefficient of a^6 in -(1-a^2)^{13} which is {13\choose 3}
that is the ans
No comments:
Post a Comment