Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Sunday, April 12, 2015

2015/031) if a^2 + b^2 = c^2 then show that \dfrac{(c-a)(c-b)}{2} is a perfect square


We have
2(c-a)(c-b) = 2 c^2- 2(a+b) c + 2ab

= (c^2+2ab) + (c^2- 2(a+b)c)

= (a^2+b^2 + 2ab) – 2(a+b)c + c^2

= (a+b)^2 – 2(a+b) c + c^2

= (a+b-c)^2

so \dfrac{(c-a)(c-b)}{2} = (\dfrac{(a+b-c)}{2})^2
 
proved

No comments: