we have
\cos 2 t= 1 - 2 sin ^2 t
so if \sin\, 1^\circ is rational \cos\, 2\circ is rational
now \cos\ 0^\circ =1 is rational
\cos (n-2^\circ ) + \cos (n+2^\circ) = 2 \cos\, n \cos 2^\circ
so \cos (n+2^\circ) = - \cos (n-2^\circ) + 2 \cos\, n \cos\, 2^\circ
if cos\, n and cos (n- 2^\circ) are rational then by strong induction cos (n+2^\circ) is rational
hence proceeding we get cos\,30^\circ = \dfrac{\sqrt3}{2} is rational which is contradiction
hence \cos\,2^\circ and then \sin\,1^\circ are not rational
No comments:
Post a Comment