we have
$x = \dfrac{1}{1-a}$
or $(1-a) = \dfrac{1}{x}$ or $a = 1 –
\dfrac{1}{x} = \dfrac{x-1}{x}$
similarly
$b = \dfrac{y-1}{y}$
now as |a | and |b| both <
1 so |ab| < 1 and hence
$1+ ab + a^2b^2 + a^3b^3 + \cdots= \dfrac{1}{1-ab} = \dfrac{1}{1- \frac{x-1}{x} * \frac{y-1}{y}}$
= $\dfrac{xy}{xy - (x - 1)(y – 1)}$
= $\dfrac{xy}{x + y – 1}$
No comments:
Post a Comment