we have
$(1+a)(1+b)(1+c) = 1 + a + b + c + ab + bc + ca + abc $
$> a + b+ c+ ab+bc+ca + abc\cdots(1)$
By am gm inequality we have $\frac{a + b+ c+ ab+bc+ca + abc}{7} >= \sqrt[7]{a^4b^4 c^4}$
or $a + b+ c+ ab+bc+ca + abc >= 7 \sqrt[7]{a^4b^4 c^4}$
or $ 1 + a + b+ c+ ab+bc+ca + abc > 7 \sqrt[7]{a^4b^4 c^4}$
or $ (1 + a)( 1+ b)(1+ c) > 7 \sqrt[7]{a^4b^4 c^4}$ from (1)
hence $(1 + a)^7( 1+ b)^7(1+ c)^7 > 7^7 a^4b^4 c^4$
No comments:
Post a Comment