Processing math: 100%

Friday, April 29, 2016

2016/039) if x=log_abc, y= log_bca, z= log_cab then show that \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1

we have x=log_abc hence x + 1 = log_abc + log_aa = log_aabc or \frac{1}{x+1} = log_{abc}a
 similarly \frac{1}{y+1} = log_{abc}b and \frac{1}{z+1} = log_{abc}c
 Hence \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = log_{abc}a + log_{abc}b = log_{abc}c = log_{abc}abc =1

No comments: