then \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = ...
Solution
Let \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = x
\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots + \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \cdots
or \frac{\pi^4}{90} = x + \frac{1}{2^4}(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots)
\frac{\pi^4}{90} = x + \frac{1}{16}\frac{\pi^4}{90}
or y = \frac{\pi^4}{96}
No comments:
Post a Comment