we have
\frac{1}{a_1},\frac{1}{a_2}\cdots,\frac{1}{a_n} are in AP hence
or (n-1)(\frac{1}{a_2} - \frac{1}{a_1}) = \frac{1}{a_n} - \frac{1}{a_1}
or (n-1)(a_1-a_2)(a_n a_1) = a_2a_1(a_1-a_n) \cdots(1)
similarly
(n-1)(a_2-a_3)(a_n a_1) = a_3a_2(a_1-a_n) \cdots(2)\
...
(n-1)(a_{n-1}-a_n)(a_n a_1) = a_{n-1}a_m(a_1-a_n) \cdots(n-1)\
adding above n eqautions we get
(n-1)(a_1-a_n)(a_n a_1) = (a_1a_2+a_2a_3+\cdots + a_{n-1}a_n) (a_1-a_n)
cancelling a_1-a_n from both sides we get the result
No comments:
Post a Comment