because \sin \alpha = \frac{3}{5} we have \cos \alpha = \frac{\pm 4}{5}
we have \sin(1000\alpha) = Im(\cos(1000\alpha) + i\sin (1000\alpha)) = Im(e^{1000\alpha i})
=Im((e^{\alpha i})^{1000}) = Im((\cos \alpha + i\sin\alpha)^{1000}) = Im ( \frac{\pm 4}{5} + i \frac{3}{5})^{1000}
hence a = Im (\pm 4 + 3i)^{1000} = Im(\sum_{n=0}^{1000}{1000 \choose b} (\pm 4)^n * (3i)^{1000-n}
A is imaginary part of the above and as each element is integer we have a is integer
No comments:
Post a Comment