Base step
For n = 9 $LHS = 3^9 = 3^3 * 3^6 = 27 * 9^3$ so $3^n >= 27n^3$
SO base step is true
Now $(\frac{n+1}{n})^3$ decreases as n increases and at n = 9 we have $(\frac{n+1}{n})^3= \frac{1000}{729}< 3$
So $(\frac{n+1}{n})^3< 3$ for all $n>=9$
Or $3 > (\frac{k+1}{k})^3\cdots(1)$ for all $k>=9$
Let it be true for n = k $k >=9$
We need to prove it to be true for n = k+ 1
$3^k > = 27 k^3$
Multiplying by (1) on both sides
$3^{k+1} > = 27 * (\frac{k+1}{k})^3 * k^3 $
Or $3^{k+1} >= 27(k+1)^3$
So it is true for n = k+ 1
We have proved the induction step also
Hence proved
No comments:
Post a Comment