Processing math: 100%

Sunday, May 3, 2020

2020/016) find n such that \sqrt{n} + \sqrt{n+2005} is a natural number

Let \sqrt{n+2005} + \sqrt{n} =m \cdots(1)

We know (n+2005) - (n) = 2005
Or (\sqrt{n+2005})^2 - (\sqrt{n})^2 = 2005
Or (\sqrt{n+2005} +  \sqrt{n}) (\sqrt{n+2005} - \sqrt{n}) = 2005\cdots(2)

Dividing (2) by (1) we get
(\sqrt{n+2005} - \sqrt{n}) = \frac{2005}{m}\cdots(3)

Subtracting  (3) from (1) we get 2\sqrt{n}= m - \frac{2005}{m}

Clearly we have m^2>=2005 so we choose m factor of 2005 that is 401, 2005

Taking m= 2005 we get n = (\frac{1}{2}(2005-1)^2 = (1002)^2 = 1004004

Taking m= 401 we get n = (\frac{1}{2}(401-5)^2 = (198)^2 = 39204

So we have solution set (1004004,39204)

No comments: