Processing math: 100%

Saturday, May 30, 2020

Q2020/019) If 3^x=4^y=12^z, then prove that \frac{1}{x} + \frac{1}{y}= \frac{1}{z}

3^x = 12^ z
so 3 = 12^\frac{z}{x}\cdots(1)
4^y = 12^z
So 4^y = 12^ \frac{z}{y}\cdots(2)
Hence 12 = 3 * 4 = 12^{(\frac{z}{x} + \frac{z}{y})} From (1) and (2)
So \frac{z}{x} + \frac{z}{y}= 1 or \frac{1}{x} + \frac{1}{y}= \frac{1}{z}

No comments: