We have
$(k+1)^3 = k^ 3 + 3k ^2 + 3k + 1$
Or $(k+1)^3 - k^ 3 = 3k ^2 + 3k + 1$
Adding from 1 to n we get
$\sum_{k=1}^n((k+1)^3 - k^ 3) = 3\sum_{k=1}^n k^2 + 3\sum_{k=1}^nk + \sum_{k=1}^n1$
The LHS is a telespcopic sum = $(n+1)^3-1$
We know $\sum_{k=1}^nk = \frac{n(n+1)}{2}$
so we get $(n+1)^3 - 1 = 3\sum_{k=1}^n k^2 + 3\frac{n(n+1)}{2} + n$
or $3\sum_{k=1}^n k^2 = (n+1)^3 - 1 - 3\frac{n(n+1)}{2} - n$
$=n^3 + 3n^2 + 3n + 1 - 3\frac{n^2+n}{2} - n$
$= \frac{1}{2}(2n^3 + 6n^2 + 6n - 3n^2 -3n -n )$
$= \frac{1}{2}(2n^3 + 3n^2 + 2n )$
$=\frac{1}{2}n(2n^2+ 3n + 2)$
$= \frac{1}{2}n(n+2)(2n+1)$
so $\sum_{k=1}^n k^2 = \frac{1}{6}(n(n+2)(2n+1)$
No comments:
Post a Comment