Sunday, December 26, 2021

2021/115) What are the maximum and minimum values of $3x+4y$ on the circle $x^2+y^2=1$

as $x^2 + y^ 2 = 1$ we can choose $x = \sin\, t$, $y = \cos\, t$

$3x + 4 y= 3 \sin\, t + 4 \cos\, t$

to convert $3 x + 4y = 3 \sin\,t + 4 \cos\, t$ to the form $A \sin (x+ t)$

$A \sin (x+t) = A \sin\,t \cos\, x + A \cos\, t \sin\, x$

we can choose $3 = 5 \cos\, x$ and $4 = 5 \sin x$  (as $3^2 + 4^2 = 25 = 5^2$

= $5 \cos\, x \sin\, t + 5 \cos\, t \sin\, x = 5 \sin (x-t)$

it is maximum when $\sin (x-t) = 1$ and maximum value = 5

minumum when $\sin (x-t) = -1$ and minimum value = 5

No comments: