Processing math: 100%

Wednesday, December 8, 2021

2021/107) Show that \tan^{-1}(k) = \sum_{n=0}^{k-1}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ) - and deduce that \sum_{n=0}^{\infty}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ) = \frac{\pi}{2}

We have n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}

Or \frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}

Using \tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}

We get  \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)-  \tan ^{-1}n

Adding from 0 to k-1 we get as telescopic sum

Hence \sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} =  \tan ^{-1}k-  \tan ^{-1}0 = \tan ^{-1}k

Taking limit as k = \infty

\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1}  = \tan ^{-1}\infty= \frac{\pi}{2}

No comments: