We have n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}
Or \frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}
Using \tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}
We get \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)- \tan ^{-1}n
Adding from 0 to k-1 we get as telescopic sum
Hence \sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}k- \tan ^{-1}0 = \tan ^{-1}k
Taking limit as k = \infty
\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}\infty= \frac{\pi}{2}
No comments:
Post a Comment