Loading web-font TeX/Main/Regular

Sunday, June 12, 2022

2022/045) Find x given (2+\sqrt{3})^x + (2-\sqrt{3})^x = 4

 we see that (2+\sqrt{3})(2-\sqrt{3}) = 4 - 1 = 1

so \frac{1}{(2+\sqrt{3}} = 2 - \sqrt{3}

Let (2+\sqrt{3})^x = y so (2-\sqrt{3})^x = \frac{1}{y}

so y +\frac{1}{y} = 4

or y^2 - 4y + 1 = 9

ot y = \frac{4 \pm \sqrt{16-4}}{2}

or y= 2 \pm \sqrt{3}

If we take y = 2 + \sqrt{3} then (2+\sqrt{3})^x = 2 + \sqrt{3} or x= 1

 Taking y = 2 - \sqrt{3} then (2+\sqrt{3})^x = 2 - \sqrt{3} or x= -1

so x \in \{ 1, -1\}


No comments: