we see that (2+\sqrt{3})(2-\sqrt{3}) = 4 - 1 = 1
so \frac{1}{(2+\sqrt{3}} = 2 - \sqrt{3}
Let (2+\sqrt{3})^x = y so (2-\sqrt{3})^x = \frac{1}{y}
so y +\frac{1}{y} = 4
or y^2 - 4y + 1 = 9
ot y = \frac{4 \pm \sqrt{16-4}}{2}
or y= 2 \pm \sqrt{3}
If we take y = 2 + \sqrt{3} then (2+\sqrt{3})^x = 2 + \sqrt{3} or x= 1
Taking y = 2 - \sqrt{3} then (2+\sqrt{3})^x = 2 - \sqrt{3} or x= -1
so x \in \{ 1, -1\}
No comments:
Post a Comment