Without loss of generality set n = 2x ( x need noy be integer so we can choose
p = m - 3x, q = m - x, r = m + x, s = m + 3x
now $pqrs+n^2 = (m-3x)(m-x)(m+x)(m+3x) + 16x^4$
$= (m- 3x)(m+ 3x)(m-x)(m+x) + 16x^4$
$= (m^2-9x^2)(m^2- x^2) + 16x^4$
$= m^4 - 10x^2m^2 + 9x^4 + 16x^4$
$=m^2 - 10x^2m + 25x^4 = (m^2 -5x^2)^2$ so it is a perfect square
as it is integer square root is also integer
No comments:
Post a Comment