We have $\sin \, ax + \cos \, bx = \frac{1}{2} (\sin (a+b) x + \sin (a-b) x$
Knowing that
$\frac{d}{dx} \ cos \, nx = - n \sin \, nx$
Hence $\int (\sin \, ax \cos \, bx) dx = \int (\frac{1}{2} (\sin (a+b) x + \sin (a-b) x)dx $
= $\frac{\cos(a+b)x}{a+b} - \frac{\cos(a-b)x}{a-b} + C $
No comments:
Post a Comment