We shall use Euler's theorem that is a generalization of Fermat's little theorem: For any n and any integer a coprime to n, one has
$a^{\phi(n)} \equiv -1 \pmod n$
Where $\phi(n)$ is number of numbers that is co-prime to n,
Let us compute $\phi(49)$
If $n = p_1^{k_1}p_2^{k_2}p_3^{k-3} ... $ when each $p_i$ is prime then
$\phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3})$
As $49= 7^2$ so $\phi(49) = 49 * (1-\frac{1}{7}) = 49 * \frac{6}{7} = 42$
Hence
$6^{\phi(49)} \equiv -1 \pmod {49}n$
or $6^{(42)} \equiv -1 \pmod {49}$
Squaring both sides
$6^{(84)} \equiv 1 \pmod {49}$
Dividing by 6 we get
$6^{(83)} \equiv \frac{1}{6} \pmod {49}\cdots(1)$
Where $\frac{1}{6}} is not fraction but inverse of 6 mod 49
Similarly
$8^{(83)} \equiv \frac{1}{8} \pmod {49}\cdots(2)$
Adding (1) and(2) we get
$6^{(83)}+ 8^{(83)} \equiv \frac{1}{6} + \frac{1}{8} \pmod {49}\cdots(2)$
Now $\frac{1}{6} + \frac{1}{8} \pmod {49}$
$= \frac{8 + 6}{48} \pmod{49}$
$= \frac{14}{48} \pmod{49}$
$= \frac{14}{-1} \pmod{49}$ as $48 \equiv -1 \pmod {49}$
$= -14 \pmod{49}$
$=35$ taking positive number
Hence remainder = 35
No comments:
Post a Comment