LHS
$= \sin 3 \theta = \sin ( \theta + 2\theta) = \ sin \theta \cos 2 \theta + \cos \theta \sin 2\theta$ usng $\sin(A+B)$ formula
$= \ sin \theta \cos 2 \theta + \cos \theta (2\sin \theta \cos \theta)$ using $\sin 2\theta$ formula
$= \ sin \theta (\cos 2 \theta + 2 \cos^2 \theta)$
$= \ sin \theta ( 2 \cos 2 \theta + \cos 2 \theta + 1 )$ using formula for $\cos 2\theta$
$= \ sin \theta ( 2 \cos 2 \theta + 1 )$
$= 2 \ sin \theta \cos 2 \theta + \sin \theta $ which is RHS
In the above putting $\theta = \frac{\pi}{3}$ we get
$\sin \frac{\pi}{9} + 2 \sin \frac{\pi}{9} \cos \frac{2\pi}{9} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$
No comments:
Post a Comment