Let the 26^{th} digit be k
so N = 1111\cdots( 50\, times) + (k-1) * 10^{24}
or N = \frac{10^{50}-1}{9} + (k-1) * 10^{24}
or 9N = 10^{50}-1 + 9 * ((k-1) * 10^{24})
because GCD(9,13)=1 so if n is divisible by 13 9N is divisible by 13.
as 13 ia prime we have
10^{12} \equiv 1 \pmod {13}
so
10{24} \equiv 1 \pmod {13}\cdots(1)
and
10{48} \equiv 1 \pmod {13}
hence
10{50} \equiv 100 \pmod {13}
or
10{50} \equiv 9 \pmod {13}
9N = 10^{50}-1 + 9 * ((k-1) * 10^{24}) \pmod {13}
= 9-1 + 9 * ((k-1) * 1) \pmod {13}
= 9k -1 \pmod {13}
this is zero and because k is a digit trying from 0 to 9 we get k=3 satisfies the condition
so the 26^{th} digit is 3
No comments:
Post a Comment