Let the $26^{th}$ digit be k
so $N = 1111\cdots( 50\, times) + (k-1) * 10^{24}$
or $N = \frac{10^{50}-1}{9} + (k-1) * 10^{24}$
or $9N = 10^{50}-1 + 9 * ((k-1) * 10^{24})$
because $GCD(9,13)=1$ so if n is divisible by 13 9N is divisible by 13.
as 13 ia prime we have
$10^{12} \equiv 1 \pmod {13}$
so
$10{24} \equiv 1 \pmod {13}\cdots(1)$
and
$10{48} \equiv 1 \pmod {13}$
hence
$10{50} \equiv 100 \pmod {13}$
or
$10{50} \equiv 9 \pmod {13}$
$9N = 10^{50}-1 + 9 * ((k-1) * 10^{24}) \pmod {13}$
$= 9-1 + 9 * ((k-1) * 1) \pmod {13}$
$= 9k -1 \pmod {13}$
this is zero and because k is a digit trying from 0 to 9 we get k=3 satisfies the condition
so the $26^{th}$ digit is 3
No comments:
Post a Comment