Loading [MathJax]/extensions/TeX/mathchoice.js

Thursday, April 4, 2024

2024/022) N is a 50 digit no. all digit except the 26^th (from left) are 1.if n is divisible by 13,find the 26^th digit?

Let the 26^{th} digit be k

so N = 1111\cdots( 50\, times) + (k-1) * 10^{24}

or N = \frac{10^{50}-1}{9} + (k-1) * 10^{24}

or     9N = 10^{50}-1 + 9 *  ((k-1) * 10^{24})

because GCD(9,13)=1 so if n is divisible by 13 9N is divisible by 13.

as 13 ia prime we have

10^{12} \equiv 1 \pmod {13}

so  

10{24} \equiv 1 \pmod {13}\cdots(1)

 and

10{48} \equiv 1 \pmod {13}

hence

 10{50} \equiv 100 \pmod {13}

 or

 10{50} \equiv 9 \pmod {13}

9N = 10^{50}-1 + 9 *  ((k-1) * 10^{24}) \pmod {13}

= 9-1  + 9 *  ((k-1) * 1) \pmod {13}

 = 9k -1 \pmod {13}

this is zero and because k is a digit trying from 0 to 9 we get k=3 satisfies the condition

so the 26^{th} digit is 3 

No comments: