We shall use 2 facts
$\cos 3x = 4 \cos^3 x - 3 \cos\, x\cdots(1)$
And
if $a+b+c=0$ then $a^3+b^3+c^3 = 3abc\cdots(2)$
We are given
$\cos\, A +\ cos\, B + \cos\, C = 0\cdots(3)$
Hence $\cos^3 A +\ cos^3 B + \cos^3 C = 3 \cos\, A \cos\, B \cos\, C\cdots(4)$
Now $\cos 3A + \cos 3B +\cos 3C$
$ = 4 \cos^3 A - 3 \cos\, A$ + $ 4 \cos^3 B - 3 \cos\, B $ + $ 4 \cos^3 C - 3 \cos\, C$ using(1)
$=4(\cos^3 A +\ cos^3 B + \cos^3 C - 3 (\cos\, A + \cos\, B + \cos\, C)$
$ =4 * 3 \cos\, A \cos\, B \cos\, C- 3 *0 $ using (3) and (4)
$ =12 \cos\, A \cos\, B \cos\, C$
Proved
No comments:
Post a Comment