We have by definition triangular number $t_k = \frac{k(k+1)}{2}$
So $t_{3k}+t_{4k+1}$
$= \frac{(3k(3k+1)}{2} + \frac{(4k+1)(4k+2)}{2}$
$= \frac{(9k^2+3k}{2} + \frac{16k^2 + 12 k + 2}{2}$
$= \frac{25k^2+15k + 2}{2}$
$= \frac{(5k+1)(5k + 2)}{2}= t_{5k+1} $
No comments:
Post a Comment