Processing math: 100%

Sunday, April 21, 2024

2024/030) Prove that for triangular numbers t_{3k}+t_{4k+1}=t_{5k+1}

We have by definition  triangular number t_k = \frac{k(k+1)}{2}

So   t_{3k}+t_{4k+1}

= \frac{(3k(3k+1)}{2} + \frac{(4k+1)(4k+2)}{2}

= \frac{(9k^2+3k}{2} + \frac{16k^2 + 12 k + 2}{2}

= \frac{25k^2+15k + 2}{2}

= \frac{(5k+1)(5k + 2)}{2}= t_{5k+1}

No comments: