Loading [MathJax]/extensions/TeX/mathchoice.js

Sunday, June 23, 2024

2024/043) Given x^2 = 2^ y + 2023 find x+ y where x and y are natual numbers(IIT JEE 2024)

We are given

  x^2 = 2^ y + 2023

Now working mod 4 we have 

2^ y + 2023 \equiv 2^y + 3 \pmod 4

y cannot be greater than 1 as 2^y + 3 \equiv 3 \pmod 4

As a square cannot be 3 \pmod 4 so only possible value is y = 1 giving x= 45 and x+y=46


No comments: