Processing math: 100%

Thursday, September 4, 2014

2014/076) Solve for largest x

 \dfrac{6}{x-6}+ \dfrac{8}{x-8}+\dfrac{20}{x-20}+\dfrac{22}{x-22}=x^2-14x-4


add 1 to each term onLHS and so 4 to RHS to get

\dfrac{x}{x-6} + \dfrac{x}{x-8} + \dfrac{x}{x-20} + \dfrac{x}{x-22} = x^2-14x

so one solution is x = 0 and further we deviding by x we get
\dfrac{1}{x-6} + \dfrac{1}{x-8} + \dfrac{1}{x-20} + \dfrac{1}{x-22} = x-14

put y = x - 14 to get


\dfrac{1}{y+8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} + \dfrac{1}{y-8} = y

or 

\dfrac{1}{y+8} + \dfrac{1}{y-8} + \dfrac{1}{y+6} + \dfrac{1}{y-6} = y

or

\dfrac{2y}{y^2-64} + \dfrac{2y}{y^2-36} = y

so y = 0

or 
\dfrac{2}{y^2-64} + \dfrac{2}{y^2-36} = 1

or
2((y^2-36) + y^2-64))= (y^2-36)(y^2-64)
or 2((2y^2-100))= (y^2-36)(y^2-64)= y^4-100y^2+ 36 *64
or y^4- 104y^2+48^2+200=0
or (y^2-52)^2 = 200
y^2 = 52 \pm 10\sqrt{2}
we should take the higher of the 2 and add 14 to get the largest x or x = 14 + \sqrt{52+10\sqrt{2}}

No comments: