some short and selected math problems of different levels in random order I try to keep the ans simple
Sunday, September 7, 2014
2014/078) given: (1+\sqrt{1+x}\tan\ x=1+\sqrt{1-x} then prove that \sin\ 4x=x
Let x = \sin\ 2y
Then \sqrt{1+x} = \sin\ y + \cos\ y
and \sqrt{1-x} = \sin\ y - \cos\ y
hence
\tan\ x = \dfrac{1+ \sin\ y - \cos\ y}{1+ \sin\ y + \cos\ y}
using if \dfrac{a}{b} =\dfrac{c}{d} => \dfrac{a+b}{a-b} =\dfrac{c+d}{c-d}
\dfrac{\tan\ x + 1}{\tan\ x -1} = \dfrac{ 1+ \sin\ y}{-\cos\ y}
\dfrac{\sin\ x + \cos\ x }{\sin\ x -\cos\ x} = \dfrac{ 1+ \sin\ y}{-\cos\ y}
\dfrac{(\sin\ x + \cos\ x) ^2}{\sin ^2 x -\cos ^2 x} = \dfrac{1+ \sin\ y}{ \cos\ y}
\dfrac{1+ \sin\ 2x}{-\cos\ 2x} = \dfrac{ 1+\ sin\ y}{ \cos\ y}
From the above y = 2x so x = \sin\ 4x proved
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment