some short and selected math problems of different levels in random order I try to keep the ans simple
Monday, September 8, 2014
2014/079) Suppose that a, b, c are sides of of a triangle. Prove that:
a^2(b + c - a) + b^2(c + a - b) + c^2(a + b - c) \le 3abc
proof:
For the angles of any triangle always
\cos\ A + \cos\ B + \cos\ C ≤ 1.5
further
c² = a² + b² - 2ab\ cos\ C
hence c³ = a²c + b²c - 2abc\cos\ C
a²c + b²c - c³ = 2abc\cos\ C
similarly
ab² + ac² - a³ = 2abc\cos\ A
bc² + a²b - b³ = 2abc\cos\ B
adding we get
a²c + b²c - c³ + ab² + ac² - a³ + bc² + a²b - b³ = 2abc (\cos\ A + \cos\ B + \cos\ C)
as
\cos\ A + \cos\ B + \cos\ C ≤ 1.5
a²c + b²c - c³ + ab² + ac² - a³ + bc² + a²b - b³ ≤ 3abc
or (a²b + a²c - a³) + (b²c + ab² - b³) + (ac² + bc² - c³) ≤ 3abc
or a²(b + c - a) + b²(c + a - b) + c²(a + b - c) ≤ 3abc
hence proved
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment