$(5 + 2\sqrt{6})^{x^2-3}+ (5 - 2\sqrt{6})^{x^2-3}= 10$
let $y =5 + 2\sqrt{6}\cdots (1)$
so we have $\dfrac{1}{y} =5 - 2\sqrt{6}\cdots (2)$
now let $z= (5 + 2\sqrt{6})^{x^2-3}$
so $\dfrac{1}{z}= (5 - 2\sqrt{6})^{x^2-3}$
hence $z+\dfrac{1}{z}= 10$
or $z^2-10z+z= 0$
hence $z= 5 + 2\sqrt{6}$ or $z= 5 - 2\sqrt{6}$
$z= 5 + 2\sqrt{6}$
=> $x^2-3 =1$ or $x=\pm 2$
$z= 5 - 2\sqrt{6}$
=> $x^2-3 =-1$ or $x=\pm \sqrt{2}$
No comments:
Post a Comment