we
have $\tan 3x - \tan\, x = \dfrac{\sin 3x}{\cos 3x} - \dfrac{\sin\, x}{\cos\, x}$
= $\dfrac{\sin 3x \cos\, x - \cos 3x \sin\, x}{\cos 3x \sin\, x}$
= $\dfrac{\sin 2x}{\cos3x \sin\, x}$
= $\dfrac{2 \sin\, x \cos\, x}{\cos 3x \sin\, x}$
= $2 \dfrac{\sin\, x}{\cos 3x}$
= $\dfrac{\sin 3x \cos\, x - \cos 3x \sin\, x}{\cos 3x \sin\, x}$
= $\dfrac{\sin 2x}{\cos3x \sin\, x}$
= $\dfrac{2 \sin\, x \cos\, x}{\cos 3x \sin\, x}$
= $2 \dfrac{\sin\, x}{\cos 3x}$