1st we convert it into partial fraction
\dfrac{1}{e^x} - \dfrac{1}{e^x +1}
= e^{-x} - \dfrac{e^{-x}}{1+ e^{-x}}
integral of e^{-x} is -e^{-x}
and
putting 1+e^{-x} = t we get -e^{-x} dx = dt
so integral of \dfrac{e^{-x}}{1+ e^{-x}} = ln | 1 + e^{-x} |
but as 1 + e^{-x} > 1 and hence
> 0 we get the integral of given expression
- e^{- x} + ln (
1+ e^{-x}) + C
No comments:
Post a Comment