Loading web-font TeX/Main/Regular

Saturday, July 25, 2015

2015/067) Integrate \dfrac{1}{e^x(1+e^x)}

1st we convert it into partial fraction
\dfrac{1}{e^x} - \dfrac{1}{e^x +1}
= e^{-x} - \dfrac{e^{-x}}{1+ e^{-x}}
integral of e^{-x} is -e^{-x}

and putting 1+e^{-x} = t we get -e^{-x} dx = dt
so integral of \dfrac{e^{-x}}{1+ e^{-x}} = ln | 1 + e^{-x} |
but as 1 + e^{-x} > 1 and hence > 0 we get the integral of given expression

- e^{- x} + ln ( 1+ e^{-x}) + C


No comments: