Processing math: 100%

Thursday, July 30, 2015

2015/072) show that \tan 3x - \tan x = \dfrac{2 \sin\, x}{cos 3x}

we have \tan 3x - \tan\, x = \dfrac{\sin 3x}{\cos 3x} - \dfrac{\sin\, x}{\cos\, x}
= \dfrac{\sin 3x \cos\, x - \cos 3x \sin\, x}{\cos 3x \sin\, x}
= \dfrac{\sin 2x}{\cos3x \sin\, x}
= \dfrac{2 \sin\, x \cos\, x}{\cos 3x \sin\, x}
= 2 \dfrac{\sin\, x}{\cos 3x}

No comments: