Saturday, August 1, 2015

2015/073) Show that the following is true for all real values of x.

$\dfrac{a^2(x-b)(x-c)}{(a-b)(a-c) } + \dfrac{b^2(x-c)(x-a)}{(b-c)(b-a)} + \dfrac{c^2(x-a)(x-b)}{(c-a)(c-b)} = x^2$
Solution 2015/073)
This can be done in 2 ways
method 1

expand
we have 1st term
= $\dfrac{a^2(x-b)(x-c)}{(a-b)(a-c)}$
= $\dfrac{-a^2(x-b)(x-c)}{(a-b)(c-a)}$
=$\dfrac{-a^2(x-b)(x-c)(b-c)}{(a-b)(b-c)(c-a)}$
= $\dfrac{x^2(- a^2(b-c)) +xa^2(b^2-c^2) -a^2bc(b-c)}{(a-b)(b-c)(c-a)}$
similarly we have 2nd term
= $\dfrac{b^2(x-c)(x-a)}{(b-c)(b-a)}$
= $\dfrac{x^2(- b^2(c-a)) +xb^2(c^2-a^2) -b^2ca(c-a)}{(a-b)(b-c)(c-a)}$
3rd term
= $\dfrac{c^2(x-a)(x-b)}{(c-a)(c-b)}$
= $\dfrac{x^2(- c^2(a-b)) +x(c^2(a^2-b^2) -c^ab(a-b)}{(a-b)(b-c)(c-a)}$

so the sum = 
$\frac{(x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b)) +x(a^2(b^2-c^2) + b^2(c^2-a^2) + c^2(a^2-b^2)) – (a^2bc(b-c) + b^2ca(c-a) + c^2ab(a^2-b^2)}{(a-b)(b-c)(c-a))}$
= $\dfrac{x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b)}{(a-b)(b-c)(c-a)}$
numerator = $(x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b))$
= $x^2(-a^2(b-c) – b^2c+ ab^2 -ac^2 +bc^2)$
= $x^2(-a^2(b-c) – b^2c+ bc^2 -ac^2 +ab^2)$
= $x^2(-a^2(b-c) – bc(b-c) + a(b^2-c^2))$
= $x^2(-a^2(b-c) – bc(b-c) + a(b+c)(b-c))$
= $x^2(b-c)(-a^2-bc+ab+ac)$
= $x^2(b-c)(a-b)(c-a)$
so we have ratio = $x^2$
hence proved

Aliter (Method 2)
This can be proved as below

because this is quadratic this cannot have more than 2 root.
But x= a, x= b, x= c satisfy the condition.
Hence this has to be identity.
Proved

No comments: