$a^{x-1}
= bc$
hence
$a^x = abc$
or $a = (abc)^{\frac{1}{x}}\cdots (1)$
similarly
$b = (abc)^{\frac{1}{y}}\cdots (2)$
$c = (abc)^{\frac{1}{z}}\cdots (3)$
hence $abc = (abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}$
hence
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1 $
or
$yz + zx + xy = xyz$
proved
No comments:
Post a Comment