Saturday, August 15, 2015

2015/079) if $a^{x-1} = bc, b^{y-1} = ca, c^{z-1} = ab$ show that $xy + yz + zx = xyz$

$a^{x-1} = bc$


hence $a^x = abc$
or $a = (abc)^{\frac{1}{x}}\cdots (1)$
similarly
$b = (abc)^{\frac{1}{y}}\cdots (2)$
$c = (abc)^{\frac{1}{z}}\cdots (3)$ 
hence $abc = (abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}$
hence 
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1 $
or $yz + zx + xy = xyz$

proved

No comments: