Processing math: 100%

Saturday, August 15, 2015

2015/079) if a^{x-1} = bc, b^{y-1} = ca, c^{z-1} = ab show that xy + yz + zx = xyz

a^{x-1} = bc


hence a^x = abc
or a = (abc)^{\frac{1}{x}}\cdots (1)
similarly
b = (abc)^{\frac{1}{y}}\cdots (2)
c = (abc)^{\frac{1}{z}}\cdots (3) 
hence abc = (abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}
hence 
\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1
or yz + zx + xy = xyz

proved

No comments: