Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Saturday, August 1, 2015

2015/074) If ax^2+bx+c=0 has complex roots and a + c \lt b, then prove 4a+c\lt 2b

because f(x) = ax^2+bx+c=0 has complex roots so this is positive for all x or -ve for all x

f(-1) = a – b + c
from given condition a + c – b \lt 0 so f(-1) \lt 0
so f(-2) = 4a – 2b + c \lt 0 or 4a + c \lt 2b
proved



No comments: