Processing math: 100%

Monday, August 17, 2015

2015/082) Evaluate (\dfrac{n}{n+1})^{1 + n} as n\rightarrow \infty

(\dfrac{n}{n+1})^{1 + n}

Let's remember one thing first: lim x\rightarrow\infty (1 + \frac{r}{x})^x = e^r
(\dfrac{n}{n+1})^{1 + n}
(1- \dfrac{1}{n+1})^{1 + n}

substitute x = n + 1

Now, as n goes to infinity, then n + 1 will also go to infinity, and x will go to infinity

lim n\rightarrow\infty (1 - \dfrac{1}{n + 1})^{n + 1} 
= lim x\rightarrow\infty (1 - \dfrac{1}{x})^x 
 
Which is e^{-1}, or \dfrac{1}{e}


No comments: