Loading web-font TeX/Main/Regular

Sunday, August 2, 2015

2015/076) Prove that: \tan\,x\tan(60^\circ-x)\tan(60^\circ+x) = \tan3x

LHS = \tan\,x\tan(60^\circ-x)\tan(60^\circ+x)
= \tan\,x\dfrac{\tan\,60^\circ-\tan\,x}{1+\tan\,60^\circ \tan\,x}\dfrac{\tan\,60^\circ+\tan\,x}{1-\tan\,60^\circ \tan\,x}
\tan\,x\dfrac{\tan^260^\circ-\tan^2x}{1- \tan^260^\circ \tan^2x}
\tan\,x\dfrac{3-\tan^2x}{1- 3 \tan^2x}
\dfrac{3\tan\,x-\tan^3x}{1- 3 \tan^2x}
= \tan 3x = RHS

No comments: