Hence
$\dfrac{1}{a} = \dfrac{y+z}{x}$
add
1 to both sides
$\dfrac{a+1}{a}
= \dfrac{x + y +z}{x}$
so
$\dfrac{a}{a+1} = \dfrac{x}{x+y+z}$
similarly
$\dfrac{b}{b+1}
= \dfrac{y}{x+y+z}$
$\dfrac{c}{c+1}
= \dfrac{z}{x+y+z}$
adding
the above we get
$\dfrac{a}{a+1}+\dfrac{b}{b+1} +\dfrac{c}{c+1}= 1$
or
$a(b+1)(c+1) + b(a+1)(c+1) + c(a+1)(b+1) = (1+a)(1+b)(1+c)$
or
$(abc + ab + ac + a) + (abc + bc + ca + b) + (abc + ca + cb + c) = 1
+ a + b+ c + ab + bc+ ca +abc$
hence
$2abc + ab + bc + ca = 1$
No comments:
Post a Comment