Hence
\dfrac{1}{a} = \dfrac{y+z}{x}
add
1 to both sides
\dfrac{a+1}{a}
= \dfrac{x + y +z}{x}
so
\dfrac{a}{a+1} = \dfrac{x}{x+y+z}
similarly
\dfrac{b}{b+1}
= \dfrac{y}{x+y+z}
\dfrac{c}{c+1}
= \dfrac{z}{x+y+z}
adding
the above we get
\dfrac{a}{a+1}+\dfrac{b}{b+1} +\dfrac{c}{c+1}= 1
or
a(b+1)(c+1) + b(a+1)(c+1) + c(a+1)(b+1) = (1+a)(1+b)(1+c)
or
(abc + ab + ac + a) + (abc + bc + ca + b) + (abc + ca + cb + c) = 1
+ a + b+ c + ab + bc+ ca +abc
hence
2abc + ab + bc + ca = 1
No comments:
Post a Comment