Loading web-font TeX/Math/Italic

Monday, August 17, 2015

2015/081) If a(y + z) = x, b(z + x) = y, c(x + y) = z show that bc + ca + ab + 2abc = 1

a(y + z) = x
Hence \dfrac{1}{a} = \dfrac{y+z}{x}

add 1 to both sides
\dfrac{a+1}{a} = \dfrac{x + y +z}{x}
so \dfrac{a}{a+1} = \dfrac{x}{x+y+z}
similarly
 
\dfrac{b}{b+1} = \dfrac{y}{x+y+z}
\dfrac{c}{c+1} = \dfrac{z}{x+y+z}

adding the above we get
\dfrac{a}{a+1}+\dfrac{b}{b+1} +\dfrac{c}{c+1}= 1
or a(b+1)(c+1) + b(a+1)(c+1) + c(a+1)(b+1) = (1+a)(1+b)(1+c)
or (abc + ab + ac + a) + (abc + bc + ca + b) + (abc + ca + cb + c) = 1 + a + b+ c + ab + bc+ ca +abc
hence 2abc + ab + bc + ca = 1

 

No comments: