The equation is very close to $(x-1)^6$ except
coefficient of $x^3$ which is $-30 x^3$ instead of $-20 x^3$
so equation is
$(x-1)^6 - 10x^3 = 0$
let $\sqrt[3]10 = t$
so we get $(x-1)^6 - (tx)^3 = 0$
x is not zero
so divide by $x^3$
$(\dfrac{(x-1)^2}{x})^6 = t$
OR $(x - 1)^2 - \sqrt[3]{10}x = 0$
ie $(x^2 - (2+ \sqrt[3]{10})x +1 = 0$
ie $x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4+4\sqrt[3]{10}+\sqrt[3]{100}-4}$
or $x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4\sqrt[3]{10}+\sqrt[3]{100}}$
so equation is
$(x-1)^6 - 10x^3 = 0$
let $\sqrt[3]10 = t$
so we get $(x-1)^6 - (tx)^3 = 0$
x is not zero
so divide by $x^3$
$(\dfrac{(x-1)^2}{x})^6 = t$
OR $(x - 1)^2 - \sqrt[3]{10}x = 0$
ie $(x^2 - (2+ \sqrt[3]{10})x +1 = 0$
ie $x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4+4\sqrt[3]{10}+\sqrt[3]{100}-4}$
or $x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4\sqrt[3]{10}+\sqrt[3]{100}}$
No comments:
Post a Comment