proof:
$a^2(\cos^2
B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B)$
= $a^2(\sin^2 C - \sin^2 B) + b^2 (\sin^2 A - \sin^2 C) + c^2( \sin^2 B - \sin^2 A)$
= $a^2(\sin^2 C - \sin^2 B) + b^2 (\sin^2 A - \sin^2 C) + c^2( \sin^2 B - \sin^2 A)$
using
law of sines we have
let
$\dfrac{a}{\sin A} = \dfrac{b}{sin B} = \dfrac{c}{\sin C} = k$ (say)
we
get
$a^2(\sin^2
C - \sin^2 B) + b^2 (\sin^2 A- \sin^2 C) + c^2( \sin^2 B - \sin^2 A)$
=$k^2
\sin ^2 A(\sin^2 C - \sin^2 B) + k^2 \sin ^2 B (\sin^2 A -\sin^2 C) + k^2
\sin ^2 C( \sin^2 B - \sin^2 A)$
=
$k^2( \sin ^2 A \sin ^2 C – \sin ^2 A \sin ^2 B + \sin ^2 B \sin ^2 A –
\sin ^2B \sin^2 C + \sin ^2 C \sin ^2 B – \sin ^2C \sin ^2 A)$
=
0