we have tan\, 60^\circ – \tan\, 20^\circ
= \dfrac{\sin\, 60^\circ}{\cos\,60^\circ} – \dfrac{\sin\, 20^\circ}{\cos\,20^\circ}
= \dfrac{\sin\, 60 ^\circ\cos\, 20^\circ – \cos\, 60^\circ \sin\, 20^\circ}{\cos\, 60^\circ\, \cos\, 20^\circ}
= \dfrac{\sin\, 40^\circ}{\cos\, 60^\circ \cos\, 20^\circ}
= 2\dfrac{\sin\, 40^\circ}{\cos\, 20^\circ}
= 2 \dfrac{2 sin\, 20^\circ \cos\, 20^\circ}{\cos\, 20^\circ} = 4 \sin\, 20^\circ
hence 4\sin \, 20^\circ + \tan\, 20^\circ = \sqrt3
or 4 \cos\, 20^\circ \tan\, 20^\circ + \tan \,20^\circ = \sqrt3
or (4 \cos\, 20^\circ + 1) \tan\, 20^\circ = \sqrt3
No comments:
Post a Comment