Processing math: 100%

Friday, October 2, 2015

2015/090) Find \frac{1+a}{1-a} if a = \cos\beta + i\sin\beta.

a = \cos\beta + i\sin\beta
so
 1+ a = 1+ \cos\beta + i\sin\beta= 2\cos^2\frac{\beta}{2}+2i\cos\frac{\beta}{2}\sin\frac{\beta}{2}= 2 \cos\frac{\beta}{2}(\cos\frac{\beta}{2} +i\sin\frac{\beta}{2})

further
1 - a = 1 - \cos\beta -i\sin\beta = ( 2 \sin ^2 \frac{\beta}{2} - 2 i \cos\frac{\beta}{2} \sin\frac{\beta}{2}) = 2 \sin \frac{\beta}{2}(\sin \frac{\beta}{2}- i \cos\frac{\beta}{2})
= - 2i \sin \frac{\beta}{2}(\cos\frac{\beta}{2} + i \sin \frac{\beta}{2})

so \frac{1+a}{1-a}= \frac{\cos\frac{\beta}{2}}{- i sin \frac{\beta}{2}} = i\cot \frac{\beta}{2} 

No comments: