Processing math: 100%

Saturday, October 3, 2015

2015/093) Show that \dfrac{\sec\,A +\tan\, A - 1}{\tan\, A- \sec\, A +1} = \dfrac{\cos\, A}{1-\sin\,A}

we have
\dfrac{\sec\,A +\tan\, A - 1}{\tan\, A- \sec\, A +1}
= \dfrac{\sec\,A +\tan\, A - (\sec^2A-\tan ^2 A}{\tan\, A- \sec\, A +1}
\dfrac{\sec\,A +\tan\, A - (\sec\,A+\tan\, A)(\sec\,A-\tan\, A)}{\tan\, A- \sec\, A +1}
= \dfrac{(\sec\,A +\tan\, A)(1 - \sec\,A+\tan\, A)}{\tan\, A- \sec\, A +1}
= (\sec\,A +\tan\, A)
= \dfrac{1}{\cos\, A }+  \dfrac{\sin\, A}{\cos\, A }
\dfrac{1+ \sin\, A}{\cos\, A }
\dfrac{(1+ \sin\, A)(1-\sin\, A)}{\cos\, A(1-\sin\, A) }
\dfrac{1-\sin^2A}{\cos\, A(1-\sin\, A) }
\dfrac{\cos^2A}{\cos\, A(1-\sin\, A) }
= \dfrac{\cos\,A}{1-\sin\, A}

No comments: