$a+b
=1 \cdots(1)$
$a^2+b^2 = 2 \cdots(2)$
from 1st we get
$(a+b)^2 = a^2 +b^2 + 2ab = 2 + 2ab = 1$
or $ab = \dfrac{- 1}{2}$
$a^2+b^2 = 2 \cdots(2)$
from 1st we get
$(a+b)^2 = a^2 +b^2 + 2ab = 2 + 2ab = 1$
or $ab = \dfrac{- 1}{2}$
hence
$a^3+b^3 = (a+b)^3 - 3ab(a+b) = 1 - 3 * \dfrac{-1}{2} * 1 = \dfrac{5}{2}$
$a^3+b^3 = (a+b)^3 - 3ab(a+b) = 1 - 3 * \dfrac{-1}{2} * 1 = \dfrac{5}{2}$
No comments:
Post a Comment