Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Sunday, December 27, 2015

2015/112) show that \cos2A + \cos6A + \cos8A = \dfrac{\sqrt{13)}-1}{4} where A = \dfrac{pi}{13}

Let
x = \cos2A + \cos6A + \cos8A \cdots(1)
by seeing that \sqrt{13} on right
square both sides of (1) to get
x^2 = \cos^2 2A + \cos^2 6A + \cos^2 8A + 2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A
multiply by 2 to get
2 x^2 = 2 \cos^2 2A + 2 \cos^2 6A + 2 \cos^2 8A
        + 2(2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A)
= \cos 4A + 1 + \cos 12 A + 1 + \cos 16 A + 1 
                    + 2( \cos 8A +\cos 4 A + \cos 10 A + \cos 6A + \cos 14 A + \cos 2 A)
= 3 + \cos 4A + \cos 12 A + \cos 16 A
                      + 2 ( \cos 8A + \cos 6A + \cos 2A + \cos 4A + \cos 10 A + \cos 14A)

Now \cos 16 A = \cos 10 A as 26 A = 2\pi
\cos 14 A = \cos 12 A as 26 A = 2\pi
So we continue
= 3 + \cos 4A + \cos 12 A + \cos 10 A + 2(x+ \cos 4A + \cos 10 A + \cos 12 A)
= 3 + 2x + 3 (\cos 4A + \cos 12 A+ \cos 10 A)
Now \cos 2A + \cos 4A + \cos 6A + \cos 8A + \cos 10 A + \cos 12A = \dfrac{-1}{2}

So \cos 4A + \cos 12 A+ \cos 10 A = (\dfrac{- 1}{2}-x)

So 2x^2 = 3 + 2x + 3(\dfrac{-1}{2}- x)
Or 4x^2 = 6 + 4x -3 – 6x
Or 4x^2 + 2x -3 = 0

This has one positive solution \dfrac{\sqrt{13)}-1}{4} and one negative solution

As \cos2A + \cos6A + \cos8A = \cos 2A + \cos 6A – \cos 5A and \cos6 A > 0 and \cos 2A > \cos 5A so this is > 0
So this is \dfrac{\sqrt{13)}-1}{4}


I have solved at http://in.answers.yahoo.com/question/index;_ylt=ApwbfmdwbadqGq5DHY.KZsiRHQx.;_ylv=3?qid=20120607073236AAFCjFo


No comments: