Let
x = \cos2A + \cos6A + \cos8A \cdots(1)
by seeing
that \sqrt{13} on right
square both sides of (1) to get
x^2 = \cos^2 2A + \cos^2 6A + \cos^2 8A + 2 \cos 2A \cos 6A + 2
\cos 2A \cos 8A + 2 \cos 6A \cos 8A
multiply by 2 to get
2
x^2 = 2 \cos^2 2A + 2 \cos^2 6A + 2 \cos^2 8A
+ 2(2 \cos 2A \cos 6A + 2
\cos 2A \cos 8A + 2 \cos 6A \cos 8A)
= \cos 4A + 1 + \cos 12 A + 1 +
\cos 16 A + 1
+ 2( \cos 8A +\cos 4 A + \cos 10 A + \cos 6A + \cos 14 A +
\cos 2 A)
= 3 + \cos 4A + \cos 12 A + \cos 16 A
+ 2 ( \cos 8A + \cos 6A
+ \cos 2A + \cos 4A + \cos 10 A + \cos 14A)
Now \cos 16 A = \cos 10
A as 26 A = 2\pi
\cos 14 A = \cos 12 A as 26 A = 2\pi
So we
continue
= 3 + \cos 4A + \cos 12 A + \cos 10 A + 2(x+ \cos 4A + \cos
10 A + \cos 12 A)
= 3 + 2x + 3 (\cos 4A + \cos 12 A+ \cos 10 A)
Now
\cos 2A + \cos 4A + \cos 6A + \cos 8A + \cos 10 A + \cos 12A = \dfrac{-1}{2}
So
\cos 4A + \cos 12 A+ \cos 10 A = (\dfrac{- 1}{2}-x)
So 2x^2 = 3 + 2x +
3(\dfrac{-1}{2}- x)
Or 4x^2 = 6 + 4x -3 – 6x
Or 4x^2 + 2x -3 = 0
This has one positive solution \dfrac{\sqrt{13)}-1}{4} and one
negative solution
As \cos2A + \cos6A + \cos8A = \cos 2A + \cos 6A
– \cos 5A and \cos6 A > 0 and \cos 2A > \cos 5A so this is > 0
So this is \dfrac{\sqrt{13)}-1}{4}
I have solved at
http://in.answers.yahoo.com/question/index;_ylt=ApwbfmdwbadqGq5DHY.KZsiRHQx.;_ylv=3?qid=20120607073236AAFCjFo
No comments:
Post a Comment