$2^{10} = 1024 > 1000 = 10^3$
so $2^{100} > 10^{30}$
further
$2^{10} < 1025 < 10^3 * \frac{41}{40}= 10^3 *( 1+ \frac{1}{40}) $
so $2^{100} < 10^{30} * ( 1+ \frac{1}{40})^{10} < 10^{30} * ( 1+ \frac{1}{40})^{40}< 10^{30} * e < 10^{30} * 3$
so $10^{30} < 2^{100} < 3 * 10^{30}$
hence 31 digits
No comments:
Post a Comment