find the value of $\frac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{ a^{2015} + b^{2015}}$
Solution
a
is root of $x^2 – 3x + 1=0$
so
$a^2 - 3a + 1 = 0$
or
$a^2
+ 1 = 3a$
so
$\dfrac{a^{2014}
+ a^{2016}}{a^{2015}} = \dfrac{1+a^2}{a} = 3 \cdots(1)$
Similarly
$\dfrac{b^{2014}
+ b^{2016}}{b^{2015}} = \dfrac{1+b^2}{b} = 3 \cdots(2)$
using
if
$\dfrac{x}{y} = \dfrac{z}{w}$ then both are $\dfrac{x+z}{y+w}$
we
get
$\dfrac{a^{2014}
+ b^{2014} + a ^{2016} + b^{2016}}{a^{2015} + b^{2015}} = 3$
No comments:
Post a Comment