find the value of \frac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{ a^{2015} + b^{2015}}
Solution
a
is root of x^2 – 3x + 1=0
so
a^2 - 3a + 1 = 0
or
a^2
+ 1 = 3a
so
\dfrac{a^{2014}
+ a^{2016}}{a^{2015}} = \dfrac{1+a^2}{a} = 3 \cdots(1)
Similarly
\dfrac{b^{2014}
+ b^{2016}}{b^{2015}} = \dfrac{1+b^2}{b} = 3 \cdots(2)
using
if
\dfrac{x}{y} = \dfrac{z}{w} then both are \dfrac{x+z}{y+w}
we
get
\dfrac{a^{2014}
+ b^{2014} + a ^{2016} + b^{2016}}{a^{2015} + b^{2015}} = 3
No comments:
Post a Comment