Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Saturday, December 26, 2015

2015/110) If 'a' and 'b' are the roots of x^2-3x+1=0 then

find the value of \frac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{ a^{2015} + b^{2015}}

Solution
a is root of x^2 – 3x + 1=0

so a^2 - 3a + 1 = 0
or
a^2 + 1 = 3a
so
\dfrac{a^{2014} + a^{2016}}{a^{2015}} = \dfrac{1+a^2}{a} = 3 \cdots(1)

Similarly
\dfrac{b^{2014} + b^{2016}}{b^{2015}} = \dfrac{1+b^2}{b} = 3 \cdots(2)

using

if \dfrac{x}{y} = \dfrac{z}{w} then both are \dfrac{x+z}{y+w}
we get
\dfrac{a^{2014} + b^{2014} + a ^{2016} + b^{2016}}{a^{2015} + b^{2015}} =  3


No comments: