\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}
= - (\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})
= - (\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})
now
x^4(y-z) + y^4(z-x) + z^4(x-y)
= x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)
= x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)
= (y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)
= (y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)
= (y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)
=(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)
= (y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)
= (y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)
= (y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))
= (y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)
= (-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)
So the given expression
= x^2 + y^2 +z^2 + xy + yz+ xz
hence \dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}= \dfrac{1}{2}((x+y)^2 + (y+z)^2 + (x+z)^2
No comments:
Post a Comment