because 31 is prime we have as per wilson's theorem
$30! \equiv -1 (\,mod\, 31)\cdots(1) $
and also $30 * (-1) = -30 \equiv 1 (\,mod\, 31) =>30^{-1} = \equiv 1 (\,mod\, 31)\cdots(2)$
from (1) and (2)
$29! \equiv 1 (\,mod\, 31)$
or $ 4 * 29! \equiv 4 (\,mod\, 31) $
or $ 4 * 29! + 5! \equiv 4 + 120 (\,mod\, 31) \equiv 124 (\,mod\, 31) \equiv 0 (\,mod\, 31)$
No comments:
Post a Comment