Processing math: 100%

Wednesday, February 17, 2016

2016/013) Prove that \cos(\tan^{-1}(\sin(\cot^{-1} x)))= \sqrt{\frac{x^2+1}{x^2+2}}

Let \cot^{-1} x = y
so \cot y = x
so \csc^2 y = x^2+1
so \sin  y = \frac{1}{\sqrt{x^2+1}}
so \sin\cot^{-1} x = \frac{1}{\sqrt{x^2+1}}
similarly  \cos \tan ^{-1}x = \sqrt{\frac{1}{x^2+1}}
Hence \cos(\tan^{-1}(\sin(\cot^{-1} x)))
=\cos(\tan^{-1}\frac{1}{\sqrt{x^2+1}})
=\frac{1}{1+\frac{1}{x^2+1}}
=\frac{1}{\sqrt{1+\frac{1}{x^2+1}}}
=\frac{1}{\sqrt{\frac{x^2+2}{x^2+1}}}
=\sqrt{\frac{x^2+1}{x^2+2}}

No comments: